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technologies have already delivered. Laser tactile canes, corneal implants and magnetic belts can
correct or extend what individuals could otherwise perceive. Here we show why accommodating
intelligent sensory augmentation devices not just improves but also changes the way of thinking
and classifying former sensory augmentation devices. We review the benefits in terms of signal
processing and show why non-linear transformation is more than a mere improvement compared
to classical linear transformation.

1. Introduction

Artificial sensors now largely outperform human sensory capacities: artificial noses can identify thousands of odours (Hu, Wan
et al., 2019) and distinguish between an infected and a non-infected wound (Haalboom et al., 2019); driverless cars detect secluded
objects with laser radar and infra-red cameras (Pulikkaseril & Lam, 2019); robots can use photosensors to recognise materials by their
sounds (Eppe et al., 2018). But what happens if humans get equipped with such artificial sensors? Can these sensors be genuinely
coupled with humans in such a way that they extend our perception beyond the use of external tools? And if so, do they really represent
a substantial novelty compared to previous sensory substitution and extension devices?

Sensory augmentation builds on the idea that the senses can be modulated and even enhanced through sensory technology. This
coupling is of a profound, interactive nature and arguably extends our cognition (Kiverstein & Farina, 2012; Wheeler, 2015). Sensory
substitution, in particular, captures the process of transferring sensory signals from one sensory modality to another. One common and
successful application has been the transfer of visual information to sound to compensate for a vision impairment like ‘the vOICe’
(Auvray et al., 2007; Meijer, 1992; Proulx et al., 2008). Other applications include vision-to-tactile sensory substitution devices (SSDs)
like TVSS (Arnold & Auvray, 2018; Bach-Y-Rita et al., 1969) and vestibular-to-tactile SSDs (Tyler et al., 2003). Findings on neural
plasticity, for instance, have demonstrated that SSDs can at least partially restore a lost sense through neural re-organisation and
practice (Amedi et al., 2007; Bach-y-Rita & W. Kercel, 2003; Cohen et al., 1997; Collignon et al., 2008).

Much of the applications of artificial intelligence to sensory augmentation are in their infancy. Pairings of sensors and Al are
developing in various directions and are driven by marketing and technological opportunities, rather than a systematic taxonomy:
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‘Smart wearables’ (see Saganowski et al. (2020) for review) encompass Al-infused smartwatches and wristbands, whereas internet-
connected textiles seem to fall under the different label of ‘smart clothing’ (Chen et al., 2016; Fernandez-Caramés & Fraga-Lamas,
2018). Additionally, intelligent prosthetics and advanced sensory substitution utilise AI to improve users’ acceptance and perfor-
mance under the traditional prosthetics and sensory substitution frameworks (Hu, Wang et al., 2019; Pinheiro Lima Neto et al., 2019).

To understand the impact of Al in sensory augmentation on the field of sensory augmentation, what is needed first is a map of the
space of conceptual possibilities. A systematic taxonomy of what already exists, but also of what is possible, requires two things: the
first one is a conceptual delimitation of the domain of sensory augmentation; the second is an analysis of what distinguishes kinds of
augmentation devices (Section 2). Here, we suggest a new, less controversial principle that distinguishes sensory augmentation devices
by their input and output rather than their perceptual function. Based on this new way of distinguishing sensory augmentation devices,
we explore how Al can be integrated into sensory augmentation and how intelligent sensory augmentation (ISA) changes the tradi-
tional taxonomy (Section 3). Then the important thing to ask is whether the proposed difference by ISADs in mapping, from linear to
non-linear, genuinely changes sensory augmentation technologies as they currently stand or simply provide ways to improve them
(Section 4)? The ‘mere improvement’ view, we argue, misses fundamental ways in which AI changes sensory augmentation: ISAD
genuinely provide a new kind of augmentation based on improving the quality rather than the quantity of sensory information
delivered to the user. By clarifying this conceptual issue in this paper, we establish clear grounds for the future development of sensory
augmentation.

2. Non-intelligent sensory augmentation
2.1. Defining sensory augmentation

The idea of improving human perception through wearable devices is not new: arguably, it goes back far into popular culture
(RoboCop, Ghost in the Shell, Inspector Gadget) and now is realised by prosthetics, sensory substitution and extension devices. Here we
count technologies as sensory augmentation, as long as they deliver additional sensory cues to convey pertinent information for a
perceptual task. Sensory augmentation, in other words, requires:

(i) that the input of a sensory augmentation device is a sensible property, set of properties or object,
(ii) that the output of a sensory augmentation device is causally related to the input and delivered as additional information to the
user in a sensory format,
(iii) with the goal to provide or improve perceptual functions.

The first requirement on the input places restrictions on the kind of inputs that lead to sensory augmentation but also deserves to be
qualified. The main issue is whether one should count virtual reality (VR) glasses as ‘augmenting perception’ as they also display
additional information in a sensory format. In many cases, the objects perceived in VR are not generated from sensible properties or
objects: VR glasses used in gaming, for instance, do not gather sensible properties from the user’s internal or external environment but
generate their displayed objects. Hence, here VR glasses do not perform sensory augmentation.

Following Dilworth (2010), it is true that the term “VR” covers only a loosely related set of technologies: there are some cases where
VR takes real objects as inputs, albeit usually distant ones; for instance, when a surgeon perceives in VR the organ of a distant patient
that he is operating on. In such cases, the input is a sensible - rather than a purely algorithmically generated - object, and a causal
relation obtains between the input and the sensory-delivered output. Such cases, arguably, can count as sensory augmentation but also
bring attention to a possible disjunction in the first condition: the input needs to be a sensible property or object, and this sensible
object is typically in one’s immediate environment. However, it could also eventually be in one’s remote environment. In this second
case, the spatial relations between the perceiver’s body and the object seen in VR are not causally related to the actual spatial relations
between the perceiver’s body and the object used as input, which opens questions. We leave the second category open to debate and
focus on inputs that are clearly taken in one’s immediate environment.

The very concept of ‘immediate’ vs ‘remote’, we reckon, is also eventually graded: the patient in Oslo operated upon by a doctor in
Cape Town is obviously spatially remote, as there is no other way it could be in a perceptual relation to the surgeon. However, the cup
captured by the head-mounted camera of a sensory substitution device like the vOICe (Meijer, 1992), which is 50 cm away from the
perceiver, is clearly in one’s immediate environment as the perceiver can also touch it. An object that would be 500 m away from a
driver and is delivered to the senses via a technological device would be an intermediate case.

If the first requirement addresses VR cases, the second one separates sensory augmentation from both cognitive augmentation and
sensory tools. Cognitive augmentation devices provide additional but symbolic or linguistic information. The human perceiver then
uses this information to form cognitive judgments. Examples include extended-memory devices (Lee et al., 2016; Smart, 2017),
personal assistants (Canbek & Mutlu, 2016; Hoy, 2018); and many digital smart wearables (Fernandez-Caramés & Fraga-Lamas, 2018;
Sun et al., 2017): smartwatches, for instance, take a sensible property like the heart rate as input and deliver it as a numerical value;
digital personal assistants or car-based navigation systems produce verbal outputs that facilitate cognitive tasks like navigation.
Similarly, text-to-speech devices classify as cognitive augmentation devices. They take in sensory signals but produce a linguistic
output. Because these devices produce information in a linguistic and not strictly sensory format, they cannot be considered sensory
augmentation.

At the other end of the spectrum, sensory tools like ordinary glasses or a cane transfer information in a sensory format but fail to add
information (Wright & Ward, 2018). The long cane represents a popular example as it enables the blind to detect obstacles through the
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extension of their tactile field. The underlying transfer of tactile information relies on the sensory capacities of the user. Because
sensory tools only mediate sensory information, they, however, cannot be considered as sensory augmentation.

The third requirement holds that sensory augmentation devices have to provide or improve a perceptual function. A perceptual
function can be detecting, locating, discriminating or identifying properties and objects in the environment. This excludes devices such
as smart textiles where the added sensory output is only the source of additional sensations. Smart textiles such as vibration motors in
jackets can provide new tactile sensations on the skin. However, those sensations do not tend to be constructed as the perception of
objects or serve a specific perceptual function (see Tajadura-Jiménez et al. (2020) for review and discussion). The output from sensory
augmentation devices has to link to some environmental property (including the internal environment, i.e. the body) and help to detect
changes in that property. Positive examples include sensory substitution devices such as vOICe, where visual information is recorded
and then transferred into auditory frequencies. The produced auditory information improves the perceptual function of spatial
awareness by linking changes in the visual field to changes in the produced auditory frequencies.

The conceptual borders between these three domains (cognitive augmentation, sensory augmentation, and mere tools) are clear
(see Table 1). However, fitting actual devices within each category remains a matter of controversy: some see the same technologies for
the blind as sensory augmentation (Kircher et al., 2012), or as more general as ‘mind-enhancing tools’ (Auvray & Myin, 2009, p. 1036)
or as providing a ‘new set of automatic recognition abilities’ that are not purely perceptual (Deroy & Auvray, 2014, p. 343). Others
would consider that an embodied approach to objects like white canes even blurs the divide between an extension of one’s body and a
tool (Murray, 2008).

2.2. The distinction by function

The function that devices support or perform has been the dominant, but also not uncontroversial, criterion used to classify sensory
augmentation devices into different categories.

On the face of it, distinguishing sensory augmentation devices according to their functions makes sense. It allows us to distinguish
devices in virtue of their role for the user: adding a new sense, deferring sensory information across the senses to compensate for a
sensory loss, or restoring a deficient sense. Sensory substitution devices illustrate the usefulness of such a distinction even to the
specific device level. Sensory substitution builds on the idea of replacing sensory information from one sensory modality with sensory
information from another. SSDs have achieved a substantial amount of success over the last decades: with the original Tactile Visual
Substitution System (TVSS), participants were able to identify visual objects through tactile stimulation within ten seconds after only
five rounds of training (Bach-Y-Rita et al., 1969). Modern versions include vision-to-tactile devices such as TVSS (Bach-y-Rita & W.
Kercel, 2003), vision-to-audition devices such as vOICe (Meijer, 1992) or vestibular-to-tactile devices (Tyler et al., 2003). Dis-
tinguishing these devices by their function for the user, such as providing ‘visual’ or ‘vestibular’ awareness, provides seemingly clear
perceptual and empirical boundaries.

Controversies arise, however, as the individuation by function depends both on views about perception and on how the output is
coupled with the existing sensory capacities of the user. The arguments in these debates depend for a large extent on the theory of
perception that one embraces, be it direct, enactive or representationalist. Empirical evidence on the phenomenology of the SSD-
induced perceptual state enforces this conceptual divide. In principle, the SSD-induced perceptual state can either be associated
with an experience in the substituting or the substituted sensory modality or lead to a new kind of phenomenal experience. The ad-
vocates of the sensorimotor view have argued that the substituting modality defers its perceptual capacity to the substituted modality
(Hurley & Noég, 2003). In the case of a blind person using a SSD-based visual aid, this means that the blind person sees through SSD’s
auditory cues. Contrary, proponents of the representationalist camp have argued that the substituting modality remains dominant
(Block, 2003). In other words, the blind person does not see but instead possesses an enhanced auditory sense. Others like Kiverstein
et al. (2015) have argued that one should classify the SSD-induced perceptual experience as part of a new sensory modality. And even
others debate whether sensory substitution is only akin to sensory perception through the rise of a new sensory experience or whether
it also involves a perceptual judgment or practical skill (Deroy & Auvray, 2012).

Ultimately, these controversies show that classifying sensory augmentation devices by their performed perceptual function is not as
easy as initially thought. Philosophical debates show that functional individuation depends on the endorsed theories of perception,
which are as controversial as wide-ranging. Empirical research amplifies this dissonance by struggling to explicate which phenomenal
state is induced (Auvray & Farina, 2017; Deroy & Spence, 2013; Farina, 2013; Nanay, 2017; Proulx, 2010) and how cross-modal
plasticity is interpreted (Amedi et al., 2007; Collignon et al., 2011; Ptito et al., 2018).

Table 1
Summary of sensory augmentation criteria with representative examples.
Criteria for sens. aug. Long cane (sens.  Corneal Implants Magnetic belt (sens. vOICe VR Smart Navigation (cogn.
device tools) (Prosthetics) exten.) (SSD) (fiction) textiles aug.)
(i) sensible properties Yes Yes Yes Yes No Yes Yes
as input
(ii) additional, sensory ~ No Yes Yes Yes Yes Yes No
output
(iii) perceptual Yes Yes Yes Yes No [?] No Yes [?]
function
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2.3. The distinction by input and output

One way to avoid these controversies is to use a different way of distinguishing categories of sensory augmentation. Here we
suggest that looking at the signal processing between input and output is a more robust way to distinguish kinds of sensory
augmentation devices, i.e. focusing on criteria (i) and (ii) instead of (iii) of sensory augmentation (see Section 2.1).

The information processing in a sensory augmentation device occurs through three main components: an artificial sensor, a
coupling system and a stimulator (Elli et al., 2014; Wright & Ward, 2018). The artificial sensor receives the incoming sensory in-
formation. The stimulator outputs a sensory signal, and the coupling system connects the artificial sensor with the stimulator. In the
sensory substitution terminology, the artificial sensor records the sensory information in the substituted sensory modality, and the
stimulator outputs sensory information in the substituting modality. From a technological perspective, the artificial sensor and the
stimulator are utilised in hardware while the coupling system connects both pieces of hardware with software.

This process of sensory substitution in SSDs and sensory augmentation more broadly involves implementing a conversion algorithm
as the coupling system. The algorithm records the sensory input in one sensory modality, transforms it into a different sensory signal
and outputs it into the desired sensory modality. The implementation of the conversion algorithm allows establishing a cross-modal,
non-physical connection between artificial sensors and artificial stimulators. The human user must learn how to make sense of the
output signal, which is the case for SSDs after extensive training.

By focusing on how the input (i) and the output (ii) are handled, we can clearly distinguish current prosthetics, sensory substitution,
and extension devices. Sensory prosthetics and sensory substitution devices are both kinds of sensory augmentation that focus on
capturing input information that has been degraded or gone missing (i): such as visual information for people with partial or full
blindness. The technologies add missing sensory information that is usually present, though the extent to which they match the one
provided by healthy organs varies (ii). Hence, we can distinguish prosthetics and SSDs in virtue of their output (ii) and not only through
their performed perceptual function (see Table 2).

In particular, prosthetics and SSDs vary in two dimensions: whether sensory information is translated into a different sensory
modality and how the sensory information is provided to the user. Borrowing Wright & Ward’s (2018) terminology, sensory substi-
tution is mostly based on a between-sense referral, while prosthetics utilise a within-sense referral. These different kinds of referral
describe how sensory information is modulated by the sensory augmentation device. Between-sense referral devices record and transfer
some incoming sensory information to a different sensory modality. In contrast, within-sense referral devices retain the sensory mo-
dality of the input. Prosthetics or other implants operate within a sensory modality: they gather sensory information, amplify it and
then forward it within the same sensory modality. SSDs mostly operate between sensory modalities: they also add otherwise missing
information, but they make it available to another sense such as vision-to-tactile devices TVSS (Bach-y-Rita & W. Kercel, 2003) and
TDU (Tyler et al., 2003), or vision-to-audition devices vOICe (Meijer, 1992) or Vibe (Auvray et al., 2005; Hanneton et al., 2010).

Another difference between prosthetics and SSDs is how the sensory information is provided to the user: through invasive or non-
invasive methods. While prosthetics rely on invasive methods such as cochlear, vestibular or corneal implants (Golub et al., 2014; Zeng
et al., 2008), sensory substitution and extension devices use non-invasive methods such as external wearable devices, which can be
taken on and off.

An additional conceptual distinction that can be drawn with the proposed input/output individuation is the distinction between
sensory extensions, sensory substitution devices, and prosthetics. Sensory extension differs from SSDs and prosthetics in the nature of
the gathered input (i). Instead of gathering missing but normally available sensory signals, sensory extension devices capture a sensory
property not normally available to the human senses. As a result, they add novel information rather than compensate for a missing
sense. For instance, Nagel et al. (2005) developed a magnetic belt that grants human perceivers access to a magnetic sense by
translating magnetic information into felt tactile vibrations (see also Hameed et al. (2010); Karcher et al. (2012)).

Traditionally, sensory substitution and extension devices have operated across senses as they translate a physical property that can
be sensed by typical humans or non-human animals (e.g. magnetic field) into sensory information accessible to an existing modality.
Within-sense sensory devices fall in a grey area: they fulfil the criteria for sensory augmentation. However, they may in some cases
transmit sensory properties that are in principle perceivable by the human user. Take, for example, night vision goggles, which
transmit visual information also to the visual modality. If they introduce changes in some sensible properties, such as orientation, size
or intensity, or extrapolate previously invisible contrasts and make otherwise non-perceptible objects visible, they should count as
sensory extension devices. But if the transmitted sensory properties are perceivable in other contexts (e.g. in better illumination
conditions), within-sense sensory devices only seem to provide a local, contextual augmentation.

The advantage of approaching sensory augmentation via the input/output characteristics is two-fold. On the one hand, the
approach is less controversial. The individuation by input/output does not presuppose a certain theory of perception to understand the
role the device performs for the user. On the other hand, the individuation by input/output remains open to classifying new kinds of
sensory augmentation devices such as those based on artificial intelligence. Intelligent sensory augmentation devices (ISAD), as we will

Table 2
Classification of traditional categories of sensory augmentation through the distinction by input/output.
Sensory Augmentation Distinctions Prosthetics Sensory Substitution Sensory Extension
(i): compensation / novelty compensation compensation novelty
(ii): within / between sense referral within between both
(ii): invasive / non-invasive invasive non-invasive non-invasive
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show in the next section, introduce a new way of transforming input to output sensory signals. This is not captured under the
traditional framework of functional individuation.

3. How sensory augmentation becomes intelligent
3.1. The pressure to become intelligent

SSDs have achieved a substantial amount of success over the last decades: with the original Tactile Visual Substitution System
(TVSS), participants were able to identify visual objects through tactile stimulation within ten seconds (Bach-Y-Rita et al., 1969, p. 19);
in recent experiments, some blind users of SSDs (Striem-Amit et al., 2012) managed to perform so well that they exceeded the threshold
for the World Health Organization definition of blindness, meaning that they were at least “legally” no longer functionally fully blind
but rather on par with the severely visually impaired (see Maidenbaum et al. (2014) for review).

However, despite the success of these between-sense SSDs in the laboratory environment, SSDs and SADs have not been extensively
utilised outside the lab (Auvray & Harris, 2014; Lloyd-Esenkaya et al., 2020). This goes back to two main reasons: cognitive overload
and perceived low usability (Elli et al., 2014). Cognitive overload describes the phenomenon that human subjects can feel over-
whelmed and stressed by the amount of additional sensory information. Only through extensive training the human user can
distinguish sensory noise from meaningful sensory signals (Reynolds & Glenney, 2012; Striem-Amit et al., 2012; Ward & Meijer, 2010).
Training is also required with retinal implants (Dagnelie, 2012) or sensory extension devices (Auvray & Myin, 2009; Neugebauer et al.,
2020). Hence, for SSDs like vOICe to become effective, the task of making sense of the additional information is fully unloaded onto
and has to be solved by the human user through extensive training. However, even after the human user has learned to use the SAD
sufficiently, the overall useability is perceived as low. The human user constantly needs to exert cognitive effort to distinguish and
interpret SAD-induced sensory information. The added value through using SSDs compared to not using SSDs has been perceived as
low because the enhanced sensory awareness does not sufficiently outweigh the cost of the exerted effort.

These challenges have pushed the field of sensory substitution and sensory augmentation at large to turn towards new solutions for
improving the usability of sensory devices. Traditional approaches have focused on improving training schemes by adapting the
training scheme to the individual user (Chebat et al., 2015; Stronks et al., 2015) or providing different settings to different users
(Brown et al., 2011). However, with the recent success in artificial intelligence, a new approach has emerged: combining machine
learning methods with existing sensory substitution and augmentation technologies.

3.2. Two ways of integrating Al into sensory augmentation

The term ‘artificial intelligence’ (AI) has no single agreed definition. A well-known modern distinction is outlined by Russell &
Norvig (2016), who conceptualise Al under four categories: thinking humanly, thinking rationally, acting humanly and acting
rationally. These categories vary in their ambition of what Al seeks to accomplish and their notion of intelligence. In the narrowest
sense, Al represents a human-like thinking system (Haugeland, 1985). In the broadest sense, Al performs complex, intelligent
behaviour remaining neutral or even agnostic on any computational similarities between humans and Al. We understand intelligence
more broadly as the ability to achieve goals in different environments (Legg & Hutter, 2007) or as the ability to acquire skills efficiently
(Chollet, 2019). This broader understanding of Al as a computer program that learns and adapts is sufficient to capture the ongoing
development of Al-based sensory augmentation.

A wide range of Al methods has been used to manipulate sensory signals. The field of robotics utilises three different kinds of
sensors (environmental, spatial and proprioceptive) to learn how to interact with the world reliably (Russell & Norvig, 2016). The field
of computer vision focuses on extracting primitive and complex features like edges, texture and objects from low-level visual signals.
One key driver for the developments in both fields has been the progress in machine learning. Through the use of data and training
time, machine learning algorithms can learn to improve their performance automatically. Some learning goals include pattern
recognition of unstructured data (unsupervised learning), input-output matching of structured data (supervised learning), and
strategy development for reward maximisation (reinforcement learning).

Performing machine learning algorithms requires a model that specifies how data is processed and where the training occurs. The
most predominant model has been the artificial neural network (ANN). Inspired by the biological brain, artificial neurons are inter-
connected and learn to adapt their connection strength to optimise the ANN’s performance. Application areas include signal pro-
cessing (Albawi et al., 2017; Egmont-Petersen et al., 2002), as well as natural language processing (Goldberg, 2017, 2016) and
decision-making models (Hramov et al., 2018; Zhang et al., 2019).

There are two ways Al can be implemented in sensory augmentation devices: before and after the output is presented to the user. If
Al is introduced before the output is presented, then AI changes how sensory information is translated within or across sensory mo-
dalities. If Al is introduced after the output is presented to the user, then Al facilitates the encoding process by the user.

Intelligent sensory augmentation devices utilising Al after the output have implicitly already been developed. Here, Al methods are
used to evaluate the quality of the final sensory signal and hence provide information on how signal quality can be improved. For
example, Kim et al. (2021) use a cross-modal generative adversarial network-based evaluation method to find an optimal auditory
sensitivity to reduce transmission latency in visual-auditory sensory substitution. Hu, Wang et al. (2019) use machine learning to
evaluate different encoding schemes for a visual-to-auditory SSD based on the user’s needs. Given that the late-blind and congenitally-
blind differ in their previous exposure to visual stimulation, different encoding schemes are needed to facilitate the recognition of
‘visual’ objects through sound. Late-blind users, in contrast to congenitally-blind users, can utilise pre-existing visual experiences,
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which provide a useful reference for any cross-modal perception. While these modern technologies have shown how Al can improve
classical sensory augmentation schemes after the output is presented to the user, we believe that the substantial improvement has yet to
come: by implementing Al before the output.

The basic idea for utilising Al before the output and as part of processing incoming sensory signals is illustrated by an environ-
mental navigation study by Kerdegari et al. (2016) who developed an ultrasonic helmet that translates ultrasonic radar reflections into
tactile feedback. The conversion algorithm is instantiated through a multilayer perceptron neural network. In a set of experiments, the
participants were asked to avoid obstacles and move in a specific direction. The helmet’s sensors gather environmental information,
then computed and forwarded as simplified and task-specific signals to the human user. Kerdegari et al. (2016) found that participants
perceive less cognitive load and reach the goal more reliably when the Al-driven helmet forwards its computation as tactile instead of
linguistic signals.

This approach is fundamentally qualitative as additional processing steps are implemented in the sensory helmet that performs
task-specific directional cueing. Instead of forwarding a high degree of quantitative information, the sensory helmet performs specific
perceptual pre-processing tasks such as camera-based object detection and navigation. This helmet offers a first glimpse at how
intelligent pre-processing could lead to sensory augmentation, at least if the forwarded output also provides additional sensory cues
about the environment, which can serve a perceptual function such as shape recognition or depth perception.

Besides neural networks, Wright & Ward (2013) have used genetic algorithms - a different machine learning method - to overcome
the challenges of traditional SSDs of cognitive overload and low usability. Wright & Ward (2013) have used genetic algorithms to
‘evolve’ efficient signal encoding schemes. Genetic algorithms are a stochastic search method that uses evolutionary principles to find
the ‘fittest,” i.e. optimal solution to a search problem (for more, see Haupt & Haupt (2003)). Their interactive genetic algorithms
expand the fitness, i.e. optimisation function to include human input. The inclusion of user input allows these interactive genetic
algorithms to incorporate an aspect of the user experience, such as ease of use, into the evolutionary process. In this early example of an
ISAD called ‘Polyglot’, Wright & Ward (2013) reimplemented the conversion algorithm of the ‘vOICe’ by mapping visual signals to
sounds. While retaining some conversion principles such as utilising frequency to represent a vertical position, the ‘Polyglot’ varies and
evolves other parameters such as frequency allocation, frequency range and contrast enhancement freely. Subsequent experiments
validate the idea of adapting the SSD to the human user. Wright & Ward (2013) report a relatively quick convergence to an optimal
balance between performance and ease of use. However, they also report that the optimal settings depend highly on the given task and
limits of the sensory capacity.

Despite their limitations, both early and implicit cases of ISAD highlight the wide range of Al methods that can be employed to
improve and transform the field of sensory augmentation technologies.

3.3. What makes sensory augmentation intelligent: Linear vs non-linear signal processing

The key difference between ISADs and SADs is the shift in computational processing of the sensory signals. Instead of translating
and forwarding the sensory signals through a linear relation between input and output, ISADs can match input and output signals non-
linearly. In the context of signal processing, the concept of linearity describes the relation of the incoming to the outgoing signals.
Signals bearing a linear relation link a change of the input signal directly to a change in the output signal. Signals bearing a non-linear
relation, on the other hand, do not necessarily match a change of the input signal with a change in the output signal. This compu-
tational shift allows ISADs to recognise complex, non-linear patterns and extend the role of a mere sensory converter to a sensory pre-
processor.

Traditionally, as an example of non-intelligent sensory augmentation, SSDs have utilised a linear mapping of recorded to output
sensory information. One of the original SSDs, the vOICe, utilises a linear mapping as a coupling system to convert visual to auditory
information. The original mapping algorithm developed by Meijer (1992) instantiates a linear mapping that is “as direct and simple as
possible” (p. 113) to “reduce the risk of accidentally filtering out important clues” (ibid). The assumption was that the “human brain is
far superior to most if not all existing computer systems in rapidly extracting relevant information from blurred and noisy, redundant
images” (ibid.). The vOICe records incoming visual signals as greyscale values and translates them into auditory frequencies. The
vOICe matches the location of the incoming signal with the frequency of the output (the higher the signal, the higher the frequency) as
well as the brightness of the incoming signal with the loudness of the input (the brighter the signal, the louder the output). Both
relations are linear and match a change of the incoming signal with a change in the outgoing signal. The user then learns to reconstruct
the decoded image through the presented sound pattern.

Contrast this with an Al-driven sensory augmentation device: by extending the sensory processing to non-linear models, an ISAD is
cable of much more than the traditional SSD. Using non-linear filtering algorithms from computer vision, an ISAD is, for example, able
to 1. reduce the sensory complexity to its essential features like edges for images, 2. perform sensory classification like navigation for
collision avoidance, 3. integrate a wide range of sensory signals simultaneously, and 4. generate complex, novel sensory patterns from
incoming signals.

Kerdegari et al.’s tactile helmet, for instance, uses ultrasound sensors to sense the environment and issues haptic navigation
commands to avoid any collision. Functionally, the tactile helmet uses a multilayer perceptron neural network to classify the incoming
sensory data into navigation commands. This transformation represents a non-linear relation between the sensory data and the
navigation command. Not every change in the incoming signal leads to a change in the outgoing signal. Instead, the neural network
solves a non-linearly separable pattern classification problem by matching changing ultrasound patterns with relatively stable tactile
signals. This non-linear reduction of initial sensory complexity greatly improves usability and reduces the user’s cognitive overload.

When comparing a traditional non-intelligent SAD like the vOICe with an intelligent SAD, the differences become clear (see
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Table 3). Due to a change in the underlying computational model from linear to non-linear, ISADs take on a more significant role in the
computational processing of sensory signals. While classic SADs are designed to transfer the sensory signal as accurately as possible to
the human user, ISADs can significantly modify the sensory signal. Instead of having to learn how to ‘make sense’ of the classic SAD’s
sensory signals with an ISAD, the human user receives a much more refined sensory signal.

The main difference with ISA comes then not just from looking at the input or output but rather at how the change in mapping (from
linear to non-linear) impacts how we can and should conceive of sensory augmentation with such intelligent forms in mind. By pre-
computing and only forwarding minimally noisy sensory signals to the human perceiver, which convey rich environmental cues, ISADs

provide substantial improvements to the process of sensory substitution as well as sensory augmentation.
3.4. Refining the input/output distinction

As demonstrated above, using Al at the input level to determine which information to send, or using Al at the output level to make
the translated information easier to learn or decipher, are two ways in which intelligent sensory augmentation can occur. The first type,
relying on a non-linear connection of incoming with outgoing signals, is the most transformative: such ISADs extend the range of
human sensory substitution and augmentation by modulating and possibly enhancing the transferred sensory information. This
approach is novel because the perceptual learning of making sense (interpreting) the modulated sensory information is no longer taken
on in full by the human perceiver but is achieved now in parts by the self-learning coupling algorithm inside of ISADs.

The main difference between SSD and ISAD is then how the gathered information is translated into the output format. It is only
through adding this new input/output criterion that one can capture the novelty of ISA: ISAD’s non-linear mapping gives up on the idea
of preserving the structure of the original data and instead transforms the data non-proportionally. Existing definitions of sensory
augmentation (Section 2) did not need to differentiate kinds of mapping because all mappings were de facto of the same kind.
However, with the emerging integration of Al within sensory augmentation, the relation between the input and the output signal
becomes a criterion with multiple values, which helps to distinguish two sub-types of augmentation, intelligent and non-intelligent.
Again, by calling a SAD intelligent, we are not attributing ISADs human intelligence, but rather we highlight the implementation of
Al models as part of the signal conversion algorithm. The fourth criterion for sensory augmentation, which we suggest introducing for
this purpose, clarifies:

(iv) that the sensory augmentation device either forwards low-level sensory information through a linear relation between
incoming and outgoing signals (for classical sensory augmentation) or extracts higher-level features through a non-linear relation
between incoming and outgoing signals (for intelligent sensory augmentation).

Low-level sensory information is a basic sensory pattern from the environment like light reflections or sound frequencies. High-
level sensory information represents a more refined sensory pattern that captures particular sensory features. Take, for example,
the representation of a human face. An image-to-sound SAD can either forward all the available sensory signals to the human user,
including the lighting in the background, or extract the human face and only forward signals related to its essential features. In other
words, instead of forwarding only low-level sensory patterns, an ISAD can filter out task-irrelevant sensory signals and extract higher-
level features. The computation of higher-level features is achieved through a non-linear model of the sensory input.

The jump in the computational capacity between linear and non-linear models can be illustrated with the development of neural
networks. The first instance of a neural network was a singular perceptron (McCulloch & Pitts, 1943). By either firing or not firing
depending on the incoming signals, the perceptron can learn to separate the incoming signals into two classes, i.e. form a linear de-
cision boundary. However, not all decision boundaries are linear or even can be approximated accurately as such. A basic XOR
operation, where only one input signal can be true for the perceptron to fire, cannot be solved by a single perceptron. Instead, solving
the XOR operation requires a non-linear model (Minsky & Papert, 1972). Combining single perceptrons into a multilayered compu-
tational model has enabled ANNSs to surpass the limits of early perceptrons. Multilayered perceptrons are the basis for modern deep
learning models. Multilayered perceptrons can model not only non-linear XOR operations but also other complex tasks like image
classification (Tolstikhin et al., 2021), cancer diagnostics (Lorencin et al., 2020) or disease prediction (Car et al., 2020).

For the field of sensory augmentation, a similar developmental trajectory is possible. Traditional conversion algorithms, as used for
many SSDs, have relied on matching incoming with outgoing sensory signal through a linear relation. The linear relation of incoming
to outgoing signals entails that changes in the incoming signals are directly related to changes in the outgoing signals. Traditional SADs
have achieved great success at the cost of cognitive overload and low usability by utilising crossmodal correspondences like matching

Table 3
Measuring up systems with the new criteria for sensory augmentation.

vOICe (traditional SSD) Tactile helmet (ISAD)

(i) sensible properties as Yes: camera Yes: ultrasound sensors
input
(ii) additional, sensory Yes: auditory frequencies Yes: tactile stimulations
output
(iii) perceptual function Yes: sense of ‘vision’ through sounds Yes: sense of ‘depth’ through vibration

(iv) sensory processing

Low-level: output signal is sensitive to all changes in input signal
(linear mapping)

High-level: output signal is invariant to change in input signal
(non-linear mapping)
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auditory pitch with spatial orientation. Incorporating modern Al methods provides the opportunity of addressing these challenges
while retaining a great success rate. By moving to non-linear computational methods, Al-driven SADs can extend the sensory pro-
cessing to extract sensory features and ultimately provide a higher quality sensory signal to the human user.

With the transition from linear to non-linear signal transformation, the role of sensory pre-processing increases. Now the processing
burden of ‘making sense’ of the incoming sensory signals is shared by the human user and the ISAD - and no longer by the human user
in full. This shift signifies a possible extension of sensory processing of the human user and even grounds the conceptual notion of an Al
extender (Hernandez-Orallo & Vold, 2019) or forms of hybrid intelligence (Akata et al., 2020; Pescetelli, 2021). In fact, ISAD can
construct high-level perceptual features based on the gathered sensory patterns through machine learning techniques without
involving the human user. Hence, ISADs enable the implementation of an extended artificial sensor that outputs constructed high-level
features in a sensory format. In the end, the human perceiver can obtain a direct sense of the constructed representation without
constructing it in the ordinary sense by herself. The only construction task the perceiver has to do is to decode the forwarded signals
from an available sensory modality, where the ISAD-information is received, into the ISAD-constructed representation.

For example, an image-to-sound ISAD can incorporate a wide range of sensory data, for instance, a depth-sensing LIDAR scanner or
a thermal camera. After reducing the overall signal complexity with a neural network such as a variational autoencoder (Kingma &
Welling, 2019) or a convolutional neural network (Albawi et al., 2017), the device can either forward compressed, low-level sensory
signals or process them even further. Further processing can include the detection of human faces close to the human user or a mapping
of recorded two-dimensional image data into a three-dimensional soundscape (Rumsey, 2012; Thuillier et al., 2018). A three-
dimensional auditory soundscape introduces a feeling of spatiality into the sound environment without additional sensory signals.
This technique can be applied for enhancing spatial awareness and, in combination with other sensory classification techniques, boost
awareness of fast-moving peripheral objects such as cars on roads. When implementing Al methods into the classic vOICe architecture,
the final auditory signal can now convey much richer and more accessible information like a three-dimensional sense of depth.

The main difference with ISA comes then if the change in mapping (from linear to non-linear) impacts how we can and should
conceive of sensory augmentation. By pre-computing and only forwarding minimally noisy sensory signals to the human perceiver,
which convey rich environmental cues, ISADs provide substantial improvements to the process of sensory substitution as well as
sensory augmentation.

4. What does intelligent sensory augmentation really change?
4.1. The mere improvement claim

Two main challenges have accompanied classic SADs, particularly SSDs, alongside their wide success: cognitive overload and the
dependency on extensive training. Both challenges have led to perceived low usability by users.

Cognitive overload arises when human users feel overwhelmed and stressed by the SSD-induced sensory input. This is partly
because the subject receives the SSD-induced sensory signals alongside the ordinary, non-SSD-induced sensory signals. In other words,
the human perceiver needs to exert cognitive effort to distinguish and interpret SSD-induced sensory information. The required
cognitive effort is plausibly higher the more complex the SSD-induced sensory stimulation is. A complex sensory stimulation then
facilitates cognitive overload (Elli et al., 2014).

Extensive training has shown to improve the human user’s ability to make sense of the additional sensory signals they receive
through their device. The human user can learn to focus on only the relevant sensory signals and block out the accompanying irrelevant
signals. A signal is considered relevant if it is closely connected to the task at hand. Hence, even if the users can successfully utilise the
SSD-produced sensory information, they need to invest a sufficient amount of training before doing so.

ISA provides possible solutions to both challenges of classical SADs by reducing the overall amount of sensory information sent
across the sensory modalities to the human user. ISA introduces machine learning algorithms that can filter sensory signals. Focusing
on task-relevant instead of task-irrelevant sensory signals consequently allows for retaining all essential sensory information used for a
particular perceptual function. Consider, for instance, the conversion from image-to-sound: instead of converting all possible visual
information to auditory outputs, reducing the converted signals to a more manageable amount like objects within a five-meter radius
yields a much more manageable final sensory output. In other words, eliminating unwanted sensory signals reduces the overall amount
of sensory information that needs to be transferred across sensory modalities and the final lower signal complexity.

This approach of reducing signal complexity has been validated in a wide range of empirical studies on white background noise. In
a clinical study on cochlear implants, Dawson et al. (2011) found that noise reduction algorithms successfully improve sentence
perception in speech-weighted and dynamic background noise. Noise reduction and hence an improvement of the signal-to-noise ratio
can significantly impact the overall perceptual performance of the human perceiver. Furthermore, van de Rijt et al. (2019) found that
for speech-recognition tasks, audiovisual performance is significantly worse with low signal-to-noise ratios.

Conceptually, ISA reduces unnecessary sensory signals by converting sensory signals non-linearly from input to output. Machine
learning methods such as convolutional neural networks or variational autoencoders have shown to be highly potent for signal
compression and dimensionality reduction - key methods for signal filtering (Albawi et al., 2017; Fang et al., 2021; Kingma & Welling,
2019). These types of compression are highly efficient because they are non-structure preserving with a non-linear mapping of input
and output data (for more see Kingma & Welling (2014); Kingma & Welling (2019); van Hoof et al. (2016); Wetzel (2017)). Imple-
menting these methods after the sensory input and before the sensory output allows an ISAD to forward only the essential, i.e. task-
relevant pieces of information, to the human user.

To distinguish between task-irrelevant and task-relevant signals, the ISAD depends on training. Determining what is task-relevant
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other words, goal-independent. More recently, some attempts have started to utilise machine learning to segment and categorise 3D
visual scenes (Caraiman et al., 2017; Morar et al., 2017): not only can the user choose the maximum number of objects to be encoded,
but she can also decide the importance of the object in the final output. Each object is encoded as a weighted sum of its size, average
depth, and deviation from where the viewer is looking direction, but the weights are established by the user. Thus, she can select
whether more weight should be given to the biggest objects, or the closest ones, or to the objects closest to the direction where the user
is looking. Ultimately, these weights could be learned through repeated use and become a flexible source of task-and situation-specific
sensory information.

Representational information quality means that the quantity and accuracy of information are adjusted to serve their interpret-
ability and ease of understanding (Wang & Poor, 1998). Classic SSDs are not indifferent to representational quality. The initial design
adjusts the codes to already established sensory correspondences. For instance, in the vOICe, it is easier to interpret a high pitch as
bright and a low pitch as dark than the reverse. However, besides the design stage, the representational quality is no longer taken into
consideration. ISADs, in contrast, guarantee that only the essential information is retained in the reconstructed data.

An ISAD example where the shift in focus from quality over quantity becomes clear is the integration of a generative deep learning
model into the signal conversion. Consider a speech-to-vision ISAD, which generates visual images of lip movements from corre-
sponding audio-speech (L. Chen et al., 2018; Tian et al., 2019). The ISAD records incoming auditory frequencies, isolates the speech
frequencies, matches the speech frequencies with a corresponding lip movement and then projects the lip movement onto a visual
display. Here, the ISAD augments the mere auditory reality with additional, high-quality visual sensations, which would not have been
possible to implement with classical sensory augmentation. This ISAD would hence be incredibly useful in scenarios where facial
movements are obscured or additional sensory cues to understand speech are needed.

Another, this time more forward-looking form of ISADs are as diagnostic devices. Al-assistance for medical diagnoses can improve
the accuracy and sensitivity of medical diagnoses, such as detecting tumours in mammograms (Rodriguez-Ruiz et al., 2018) or
classifying liver tumours. Importantly, patients still widely prefer an analysis where both radiologists and Al are involved, compared to
either of them alone (Dewey & Wilkens, 2019). Existing solutions, however, all choose to provide the Al-generated diagnosis uniquely
in a symbolic format, for instance, as a probability statement about the type and location of a tumour. ISAD could, by contrast, provide
its computational results in a sensory format. Hence, the human doctor gains access to an extensive diagnostic system through her
senses and forms a medical judgment with all the available information.

5. Conclusion

Sensory substitution and extension devices have pathed a way to restore sensory deficiencies through other, healthy senses. This
has been achieved by recording sensory information with a sensory substitution device, transforming the signal into a different sensory
modality and then forwarding the translated signal to the human perceiver. The standard limitation for these devices has been the high
complexity of the outgoing sensory data leading to a high cognitive load and long training hours. This limitation can now be alleviated
by artificial intelligence. In fact, implementing Al into sensory augmentation devices challenges the so far dominant assumption that
the human can encode the final sensory pattern with similar precision to an encoding algorithm, where more information leads to
higher encoding accuracy. However, as the slow adaptation outside of labs shows, without extensive training, no such results can be
achieved (Elli et al., 2014; Lloyd-Esenkaya et al., 2020). The human has to learn to make sense of the, from the human perspective,
complex and noisy sensory information.

In this paper, we have shown that introducing Al-based, non-linear mapping methods to the field of sensory augmentation leads to a
new kind of sensory augmentation. This category of intelligent sensory augmentation challenges the assumption which dominates the
field of sensory augmentation: that the perceptual function is better served by providing as much information as possible to the user.

Instead of this quantitative and linear approach, intelligent sensory augmentation introduces perceptual pre-processing of sensory
information with the goal to provide a sensory output of the highest sensory quality - both taking into account the context and task -
yielding a higher representational accuracy and ease of use. The difference in mapping (from linear to non-linear) points to a difference
in principle (from quantity to quality) with suffices to make intelligent sensory augmentation more than ‘mere improvements’ of
existing technologies.

Our argument is primarily based on what we call the input/output distinction of sensory augmentation: a way of looking at what
makes a sub-category of sensory augmentation a separate category based on inputs, outputs, and ways of mapping them. As discussed,
many debates in the literature take another perspective on individuating types of sensory augmentation through their assisted
perceptual function: is it extension (by acquiring a new sense), substitution (by deferring a function to an existing sense) or restoration
(by reinstating a lost sense)? Our approach here does not mean that the functional approach cannot be further applied to these novel
intelligent sensory augmentation devices - but that it will depend on which devices are engineered and how they couple with human
users - something which cannot be anticipated yet. In addition, we do think that the range of possibilities introduced by intelligent
sensory augmentation devices will change the practical and theoretical landscape around sensory augmentation.

Practically, through their qualitative focus, they will change the way the debates about functions have gone so far: that is, centred
around how to fit the ‘added quantity’ of information into one of the sensory modalities. Because of the lower load for the users, they
can also eventually provide multiple kinds of information to them, for instance, both tactile and auditory, opening up questions
regarding these new augmented multisensory experiences, which would not reduce to the ‘which modality’ questions.

Theoretically, the role of action in learning sensory substitution devices and sensory extensions has so far been used to promote
enactive accounts of perception, whereas action may no longer play such a constitutive role in intelligent sensory augmentation.

In these respects, Al is clearly introducing a technological and conceptual shift in sensory augmentation.
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